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Quite extensive literature of both the survey [I, 2] and specific kind [3, 4] exists 
apropos the electromagnetic acceleration of bodies. The majority of the results described 
in these works is obtained by using numerical methods. Their analytic extension to the 
whole gamut of modifications of such a multiparameter problem as is the problem of the rail 
accelerator, turns out to be made difficult here. In which connection it is useful to find 
those relationships connecting the characteristics of the discharge loop with the parameters 
of the body being accelerated, which would permit making equally likely estimates of quan- 
tities of interest without pretensions to special accuracy but qualitatively correctly and 
rapidly. It should be noted that important relationships concerning taking account of the 
influence of the magnitude of the loop active resistance on the asymptotic of the efficiency 
of transforming the storage energy into kinetic energy are presented in [5]. The present 
paper proposes to make accessible a rapid estimate and magnitudes of the electrical character- 
istics of the discharge loop as a function of the requirements ~mposed on the acceleration 
channel (the length of the acceleration, the allowable overloads, the velocity required) 
for both a single-stage and multistage accelerator. 

I. The Lagrange function~ ~f, that has the following form for an ideal rail-accel- 
erator 

�9 qS 

~ = --~- + ~ q2--~o (i.i) 

is used for formulation of the problem. Here the generalized coordinates ql and q2 are, 
respectively, the path traversed by the body and the charge of the energy storage condenser, 
L 0 is the initial accelerator inductance, C is the condenser capacitance, k is the linear 
inductance of the accelerator, and m is the mass of the body being accelerated. 

The analytic solution of the equations of motion generated by (i.i) has not been found 
and, as was mentioned above, a theoretical examination of the acceleration process requires 
the numerical solution of these equations. 

The following procedure is proposed below for an express-estimate of the rail acceler- 
ator parameters. Let us consider the "motion" equation for q2 

~L -4- ~L A- qJC = 0 ( 1 . 2 )  

(L = L 0 + k q l ) .  I n  c o n f o r m i t y  w i t h  ( 1 . 2 )  l e t  u s  f o r m u l a t e  t h e  e q u a t i o n  

2n 2q = O, ( ] . 3 )  
+ (,2+2) t, q + Loc(~+2) 

in which the time-dependent coefficients of (1.2) arereplaced by constants that represent 
the average over the acceleration time t, = x,/<V> (x, is the acceleration path, and <V> 
is the mean velocity on the acceleration section). The averaging is performed from the 
computation that the increment in the inductance 5L would be a quantity nL 0 during the time 
t,. The functions 

q = qo~  exp ( - -  5t/Z) cos (wt - -  9); ( 1 . 4 a )  

= qo~ exp ( - -  6t/2) sin wt, ( 1 . 4 b )  

6 = 2n](n + 2) t , ,  w o = Woo V2l(n + 2), Woo = t/L]/"~oC, 

r = a r c t g  (812w),  ~ = ~/FW~ - -  ~ 4 -  

are a solution of (1.3). 
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The selection of namely the vibrational solution of (1.3) is dictated by the fact that 
the presence of a component proportional to the current in (1.3) does not result in irrever- 
sible losses (as for a purely active resistance) responsible for the passage over to an 
aperiodic solution. For an ideal rail accelerator the quasivibrational discharge mode is 
realized independently of the value of the coefficient in the mentioned component. We shall 
consider (l.da) and (l.db) to represent the approximate solution (1.2). We use the energy 
conservation law for the subsequent calculations and (in the interests of simplifying the 
calculations) make them for the times t, = %w/m. Then we can write for % = (2p + I)/2, 
p = 0, I, 2, .... 

L ,  ql/2 + mV~/2 + q~/2C = Eo; ( 1 . 5 a )  

and for % = I, 2, 3 . . . .  

2 9 q, / . c  +mv~,/2 = So (1.5b) 

( t h e  q u a n t i t i e s  w i t h  t h e  a s t e r i s k  r e f e r  t o  t h e  a c c e l e r a t i o n  c h e c k i n g  t i m e  t , ) .  L e t  us s u p -  
p l e m e n t  t h e s e  r e l a t i o n s h i p s  by a k i n e t i c  c o n d i t i o n  i m p l y i n g  e q u a l - a c c e l e r a t i o n  o f  t h e  s p e e d -  
up process 

t ,  = 2x,/V,  = 2nLJkV,. ( 1 . 6 )  

The f o l l o w i n g  r e a s o n i n g  i s  a s p e c i f i c  j u s t i f i c a t i o n .  The q u a d r a t i c  d e p e n d e n c e  o f  t h e  f o r c e  
a c t i n g  on t h e  body  on t h e  m a g n i t u d e  o f  t he  c u r r e n t  r e s u l t s ,  f o r  a q u a s i s i n u s o i d a l  d e p e n d e n c e  
o f  t h e  c u r r e n t  on t h e  t i m e ,  i n  t h a t  d e p e n d e n c e  o f  t h e  v e l o c i t y  o f  t h e  body b e i n g  a c c e l e r a t e d  
on t h e  t i m e  as  c o u l d  be  r e p r e s e n t e d  in  t he  f o r m  o f  s e c t i o n s  c o n t i n u i n g  e a c h  o t h e r  and d i m i n i s h -  
ing  a l o n g  t h e  o r d i n a t e ,  and e a c h  o f  them r e c a l l s  a h y s t e r e s i s - f r e e  m a g n e t i z a t i o n  c u r v e .  
During the time of each such section the influence of the acceleration growing in its first 
half (on the body velocity) is compensated almost completely by the acceleration drop in 
the second. Consequently, the introduction of a mean effective acceleration over time is 
a fair approximation to obtain a number of integral relationships. The constraints associated 
with such an approximation are discussed below. Numerical computations performed confirmed 
this and showed that the accuracy of the relationship (1.6) turns out to be satisfactory 
to n = 2, ..., 4. 

After the calculations we obtain expressions for the process efficiency corresponding 
to (l.5a)and (l.Sb) 

~v~, ~ + i (z~x~ ~ + ~)  e-~ ~ - ~ .  
~ q - - - ~ o  I --2 . . . . .  = n -~ 2 7 4~,2Z~ 2 4~2,~, 2 ' ( 1.7 ) 

= I -- e-~, ( 1 . 8 )  

as well as the connection between the natural f"requency of the storage loop and the accelera- 

tion characteristics 

~. Kid~2 + ~)(~ + 2) ~oo = ~ ( 1 . 9 )  

(~ = 2n/(n + 2)). Computations showed that the acceleration efficiency drops noticeably 
for n > 2 and a further increase in the velocity requires an out-of-proportion magnification 
of the increase in the acceleration length. Substituting n = 2 into (1.7)-(1.9) and noting 
that for % = i, 4~2~ 2 ~ ~2, we already obtain q = I - 1.5 exp(-l) for % = (2p + I)/2, p = 
0, I, 2, ..., for q = i - exp(-l) for k = I, 2 .... and 

%0 = ~ v , / (  V'Y z,).  ( ~. lO) 

l~he last two formulas for the efficiency can be combined into one by taking their average 
and being released in such a way from the ~elation to ~. Then for n = 2 

,,v~,/2~o = 0.5. ( L. i l  ) 

It was useful to compare the results of the estimates obtained by means of (1.10) and ([.11) 
with the results of the numerical solution of the system of differential equations generated by 
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TABLE 1 

O,15 
0,24 
0,4 
0.56 

0,4 
0,48 
0,45 
0.46 

~est 

,6 

i,6 
t.3 

;~ true ! 

3Li5!  2,6 
1,9 
1.6 

0,55 
0,59 
0,3i 

%st 

0,64 
0,4 
0,5 

0,8 
0,5 
0,5 

(I.]). To this end, an appropriate program was compiled and several modifications were com- 
puted. We use the quantity • = (CU0k)2/mL0 (U 0 is the initial voltage on the condenser). 
It is easy to show (by analyzing the conditions for satisfying the inequality ~ ~ i) that 
for x ~ 1 the body being accelerated is "heavy" for this accelerator, its acceleration 
is realized slowly for a quaslperiodic discharge of the condenser during several periods. 
And on the other hand, for x m 1 the body is "light" and is accelerated in a time approxi- 
mately equal to the duration of the first half-period of the discharge, which in this case 
is almost aperiodic in nature (with, nevertheless, certain current passages through zero). 
The results of the comparison (Table 1) show that the quantities of the efficiency obtained 
for n = 2 differ:slightly from the value 0.5 given by (i.Ii) for almost all • The deviation 
is noticeable just for • > 50, where neglecting the quantity ~ as compared with 21~ becomes 
incorrect and q, evaluated by means of (1.7) equals 0.35. Let us also note that the data 
of Table 1 correspond to the results in [I]. To analyze the accuracy of (I.I0) we convert 
it by taking account of (i.ii) 

% = • (1.12) 

Values of les t calculated by (1.12) and %true determined from the results of the numerical 
solution are presented in Table I. The number of half-periods together with fractions of 
the last half-period of the discharge proceeding up to the time the quantity &L reaches 
the value 2L 0 was taken as %true- As is seen, the nearness of the estimates to the "exact" 
numerical results is totally satisfactory. Let us note that the relationship (1.12) permits 
estimation of the number of roots of the solution q2(t) from the system of equations gener- 
ated by (i.I) in the interval 0 < t ! t, corresponding to the change in the coordinate ql 
within the limits from 0 to 2L0/k without solving the system itself. 

Therefore, by taking the average of the coefficients of the quasilinear equation (1.2) 
with (1.6) taken into account, and using the energy conservation law, two relations are 
successfully obtained that connect the energy storage loop characteristics (woo , E0) , the 
parameters (x,, k) of the acceleration channel, and the kinetic energy of the body being 
accelerated. Let us recall that these relationships are approximate and have a limit of 
their application. The presence of such a limit is governed by the fact that the accuracy 
of the assumption expressed by (1.6) drops as % increases, an artificial reduction in the 
velocity V, occurs. The relationships (1.7) and (1.8) also demonstrate this. 

Indeed as % + ~ and n + = the efficiency calculated by them does not tend to one as 
it should but is a somewhat smaller value. Nevertheless the mentioned relations, as is 
seen from Table I, turn out to be completely suitable for a quite extensive domain of vari- 
ation of • and n, which is interesting from the practical viewpoint; they even reflect the 
non-monotonic nature of the dependence q(~'), inherent to the acceleration in an ideal rail 
accelerator and illustrated in [i]. 

2. By using the method described above we estimate the possibility (or requirement) 
of a multistage rail accelerator each of whose stages operates independently of the others. 
Indeed by supplementing (l.5a) or (l.Sb) with the quantities mu characterizing the kinetic 
energy of the body at the entrance to the (i + l)-th stage and by writing (1.6) in the form 

2x. 2nLo 
t .  = Yi+V~+l  ~ k (Yi+V~+ O '  ( 2 . 1 )  

we obtain from the energy conservation law (again inaccurate for n, % ~ ~) 

2Eon (2.2) 
~+~- I = ~v~" 
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Hence 

vi+ z+ t--c~176176 F (2.3) 
Vi 

becomes a corollary of (2.1), where q is determined from (1.7) or (1.8), F = 2~l(x~; 

Vi+ z = ~i+zVi is the velocity at the exit of the (i + l)-th accelerator stage. We again 
have two relationships, one of which is the potential possibility of this stage while the 
other formulates a requirement on the eigenfrequency of the discharge loop (this means on 
the initial voltage Ui+ I on the condenser) as a function of the given acceleration charac- 
teristics 

' U~+ 1 =~i.(u + t) 2 ~ B  (2.4) 

(B = x,2F2/L0). It is easy to see that (2.3) goes over into (1.9) for V 0 = 0 (acceleration 
with zero initial velocity). The accuracy of (2.2) and (2.3) is also verified during analysis 
of the results of the numerical solution of the equations of motion generated by (i.i). 

The discrepancies between the corresponding quantities in each stage are about 1%. 
The qualitative deduction characteristic for both computations using (2.2) and (2.3) and 
for numerical computations, and that merits attention, reduces to the following. If two 
multistage accelerators with initial voltage U i in each stage and with velocity V i achievable 
in each stage are compared for different velocities at the entrance to the first stage, 
then it turns out that if the ratio between the initial velocities at the entrance to the 
first stage is j then starting with the stage numbered i = j the difference between the 
body velocities at their exit, exactly as the difference in the initial voltages of the 
batteries of these stages, is around 5%. In other words, the difference between multistage 
accelerator parameters that owes its origin just to the difference between the velocities 
at the entrance to the first stage, exists just in the first several stages (see Fig. i). 
Superposed in Fig. i are discrete dependences of the reduced velocity at the stage exit 
and the initial voltage of the battery of condensers of the stage on the number of the stage 
for four modifications that differ by the velocities at the entrance to the first stage 
(they are determined from the graph for i = 0). The velocity scale is V x = 2vr~-~0/m. The 

computations were performed for x~ = 0.2 m, L 0 = 4.10 -8 H, E 0 = 5.10 5 J, m = 10 -2 kg, k = 

4.10 -7 H/m, n= 2, and X = 1. 

3. The whole preceding investigation of the problem of a rail accelerator was without 
taking account of any constraints associated with the real characteristics of materials 
of elements of the accelerator and the body being accelerated. It is well known that the 
possibility of transmitting large currents in an acceleration channel is constrained by 
requirements on the mechanical and thermal strength of the electrode material. These problems 
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occur even for the material of the body being accelerated. Let us consider the corrections 
that must be introduced into the system of estimates presented above in connection with 
taking account of these constraints. 

An estimate of the magnitude of the mean acceleration (for V 0 = O) yields 

a = V~/2x,, (3.  i) 

and the condition assuring the strength of the cylindrical body being accelerated is formu- 
lated as 

V,pA/2x ,<~T,  (3.2) 

where ~T, P are the yield point and density of the material of the body being accelerated, 
and A is its dimension in the acceleration direction. Taking account of relationships of 
the type (I.Ii), we have a condition on the maximally allowable energy reserve in the 
condenser 

E o < 20TSx, = 2A, ( 3 . 3 )  

(S is the transverse section of the body being accelerated and A, is the work of the force 
destroying the body on the acceleration path). 

Therefore, taking account of the possible destruction of a body being accelerated to 
a velocity V, (in the n = 2 mode) in the section x, explicitly constrained the allowable 
storage energy reserve by a quantity proportional to the work of the "destructive" force 
on the acceleration path. Numerical data characterizing the orders of the boundary energies 
can be presented. Thus E 0 = 3-10 4 J to accelerate a titanium body [6] for x, = 0.2 m, S = 
10 -3 m 2 (a disk with about a 2-cm radius). To accelerate a metal-ceramic body in this case 
E 0 should be almost two orders of magnitude greater [6]. 

Calculations analogous to those performed result for a multistage accelerator in the 
condition 

vi~ -- l <2~x,/(V~_~gA).  ( 3 . 4 )  

The c o n s t r a i n t  on t h e  e l e c t r o d e  s t r e n g t h ,  w r i t t e n  in  [4] in  t h e  form o e > k I 0 2 / 2 S e ,  w i t h  a 
c e r t a i n  s t r e n g t h  marg in  can be r e p r e s e n t e d  as  f o l l o w s  ( I  0 i s  t h e  s t o r a g e  s h o r t - c i r c u i t  a m p l i -  
t u d e  c u r r e n t )  

Oe> kU~176 (3 .5 )  

(~e is the yield point of the electrode material). Therefore, two more have been added to 
the relationships obtained earlier. If it is taken into account that the problem of an 
ideal rail accelerator includes more than ten characteristics, then it can be shown that 
by having just four relationships it is difficult to look forward to obtaining estimates 
of the parameters assuring an optimal mode of accelerator operation. However, if it is 
taken into account that part of the characteristics is given very specifically (the velocity, 
length, n, etc.), the number of free characteristics can be diminished and the express- 
estimate described can aid in rapidly and sufficiently exactly selecting those modifications 
that would be considered close to optimal by some criteria. Their further (more exact) 
numerical investigation permits selection of the necessary modification. 

4. In conclusion, let us note that this approach makes possible the estimation of 
the influence of the active resistance of the accelerator channel. In this case (1.3) takes 
the form 

~ + [2n+ (2~+ ?n)t,.] ~ + 2q = 0 ,  
L J ( n +  2) l,  LoC(n+2) ( 4 . 1 )  

where 7 is the ratio between the linear resistance and the linear inductance of the rails 
accelerator channel, T is the ratio between the initial value of the loop resistance and 
the initial value of the inductance. The representation (4.1) permits making computations 
similar to those performed in the previous sections. It is hardly e~pedient to present 
them here since for the t, for which the discharge is still quasisinusoidal, the results 
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TABLE 2 

2Eo/mV 2 ~est D true 

5,55.t0-~ 
O,ili 
0,287 
0,555 

0,05 0,08 
0,09 0,t3 
0,i85 0,t96 
0.28 0.24 

obtained from the efficiency and the requirement on the storage loop eigenfrequency will 
be corrected only quantitatively. A study of the aperiodic mode is of definite interest. 

The simplest analysis of (4.1) shows that each acceleration mode is made aperioidic 
sooner or later. A condition can be formulated for which the damping coefficient effective 
during acceleration will not permit development of a vibrational process generally. It 
is easy to see that this condition is the following 

V 2 .... 2~+ (2T+V@t, ( 4 . 2 )  
%o ~ 2 (a + 2) t ,  i ' "  

After a time t = 6/6 in the discharge aperiodic mode the current drops e times as compared 
with the amplitude value. Let us limit the acceleration duration to precisely this quantity. 
Then 

t = 4(n + 3)/(2~ + ?n) 
(4.3) 

and we have when using a constant effective value of the acceleration as before 

V, = 2x,/t, = nLo (22 + ?~/(2k (n + 3~. (4.4) 

Introducing the characteristic velocity as in [5] 

V~ = 4<R>/k = 2Lo(2~ + ? ~  ( 4 . 5 )  

and using the relationship presented there, we obtain that the ratio between the kinetic 
and the scattered energies due to Joulean heating is expressed as 

_=_ E k l E  R = V , / V ~  = n / ( 4 ( n  + 3~. (4.6) 

In other words, a purely aperiodic current discharge mode during acceleration permits utili- 
zation of just about 1/5 of all the storage energy in the best case. For n = 2, ~ = 0.I. 

Let us estimate the magnitude of the efficiency of a non-ideal rail accelerator as 
a function of the storage energy and the accelerator characteristics cited in [4, 5]. For 
a typical rail accelerator we have L 0 = 10 -8 H, k = 10 -7 H/m, and T = 105 sec -I (the linear 
resistance of the acceleration channel is here taken equal to 10 -2 ~/m, and the storage 
resistance is 10 -3 ~). The nature of the change in the efficiency of such an accelerator 
is represented in Table 2 as a function of 2E0/mVx 2. The calculations were performed for 
n = 1 with (4.5) taken into account. Here the values are presented of the efficiencies 
obtained for a numerical solution of the rail accelerator differential equations with the 
characteristics presented above. The numerical solution also showed that at the time when 
n = 1 the acceleration in a real rail accelerator practically ceases, which also justifies 
the selection of the value of n. 
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SINGULARITIES OF THE ROTATING CYLINDRICAL SHELL CONVERGENCE PROCESS 

S. M. Bakhrakh, N. P. Kovalev, V. A. Raevskii, 
Yu. M. Styazhkin, and T. A. Toropova 

UDC 593.13 

It is noted in [i, 2] that during the inertial convergence of viscous cylindrical shells 
the inner shell boundary is arrested upon reaching a certain distance from the axis of sym- 
metry rmi n whose magnitude depends on the coefficient of viscosity and on the geometric and 
kinematic shell parameters. This dependence can be utilized to determine the coefficient 
of viscosity. However, measurements are made difficult because of the small rmi n for a suf- 
ficiently high convergence rate. 

Inertial convergence of a rotating cylindrical shell is investigated in this paper 
with compressibility and viscosity taken into account. Energy transformation and redistri- 
bution occurs during convergence of such a shell. The kinetic energy of radial motion is 
converted into rotation energy and into internal energy of the substance. The energy of 
the rotational motion goes over into thermal energy due to the viscous friction of the rotating 
shell layers. A time sets in here when the velocity of radial motion of the inner shell 
boundary becomes zero, the inner boundary is arrested at a certain distance from the axis 
of symmetry, after which separation of the shell starts. 

The quantity rmi n depends on the shell geometric dimensions, on the relationship of the 
kinetic energy of the radial and rotational motion at the initial time, and what is of special 
interest, on the coefficient of viscosity of the shell material. Depending on the initial 
data, rmi n for a viscous rotating shell can turn out to be substantially greater than for a 
shell of the same dimensions that does not rotate. 

The system of equations describing rotating shell motion with viscosity and compressi- 
bility taken into account has the following form [3] 

p d u ~ t  = --OP/~r + OS~,/ar + (S, ,  - -  S ~ ) / r  + p ~ r ,  

d ~ t  = - -2u~ / r  q- (OS,~/ar q- 2Srr 

dp~ t  = --p(au/Or + u/r), dr/dr = u, 

de/dt = - -  P di /p/dt  + (S~, + S ~  + 2S~r ( 1 ) 
P = P(p, e), Srr = ~(2Ou/Or - -  u/r)2/3, 

Sr = ( 2 / 3 ) ( ~ ( 2 u / r -  Ou/Or)), Sr ,  = ~r a~/Or, 

where ~ is the angular rotation, ~ is the coefficient of viscosity, Sij are the viscous 
stress tensor deviator components in an x, r, ~ coordinate system (ox is the axis of rota- 
tion), and the remaining notation is standard. 

Heat conductivity and second viscosity effects are not taken into account in this formu- 
lation. For the case of condensed media under consideration such an approximation is justi- 
fied. The heat conductivity effects are excluded since the thermal relaxation time �9 = 
s is substantially greater than the characteristic times of the process [3, 4] (~ is 
the characteristic dimension and X is the thermal diffusivity coefficient). The contribu- 
tion of second viscosity to the global part of the stress tensor is small compared with 
the pressure [5]. 

The system (i) was solved numerically by a finite-difference method using the method 
of splitting according to physical processes [6, 7]. The solution of the system (i) was 
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